
SCF4-SDK comes with open-sourced command line and GUI sample programs for rapid controller
evaluation. A simple control software example is provided for testing and demonstration. Software
is given "as is" to help with getting started and testing.

Source code is maintained on GitHub

There are several control software branches maintained in parallel for different cameras. See table
below for details

Camera / Product Controller board Notes

C1_PRO_X18 SCF4-L087 Camera block with 18x motorized
zoom lens

C1_PRO_X20 SCF4-L090 Camera block with 20x motorized
zoom lens

C1_PRO_X10 SCF4-L054 Camera with 10x motorized zoom lens

C1_PRO_X3 SCF4-L050 Camera with 3x motorized zoom lens

SCF4-L065-KIT SCF4-EVB 5-50mm lens with M14/CS mount

SCF4-L002-KIT SCF4-EVB 2.8-12mm lens with M14/CS mount

Python program with a graphical user interface allows many parameters to be controlled by an
inexperienced user. To keep user interface uncluttered some parameters are not displayed. After
connecting to SCF4 controller virtual serial port version string should be displayed at the bottom.
Also, all controls will be activated. From now relative movement commands should be issued to
check if connected motors turn properly (once button is pressed it will change positioning mode to
absolute). When sliders operated positioning is switched to absolute mode, it makes sense after
the axis is referenced.

Python scripting language with PyQt5 user interface was chosen because of rapid development

Demonstration software
Overview

GUI

https://github.com/Kurokesu/SCF4-SDK
https://www.kurokesu.com/shop/C1_PRO_X18
https://www.kurokesu.com/shop/C1_PRO_X20
https://www.kurokesu.com/shop/C1_PRO_X10
https://www.kurokesu.com/shop/C1_PRO_X3
https://www.kurokesu.com/shop/SCF4-L065-KIT
https://www.kurokesu.com/shop/SCF4-L002-KIT


and clear syntax. Python 3.6 and a few dependencies should be installed before running any
examples. Python and PyQt5 enables modern cross-platform user interface capable of running on
high DPI monitors correctly.

Many lenses and motion systems can be connected to the controller and they can be split into two
groups - with and without limit/reference switch/sensor. So there are two fundamentally different
homing approaches.

1. Homing without limit switch is not very accurate but universal and works with all lenses.
Idea is to rotate motor until the mechanical system hits its limit, then rotate a bit
backwards and mark position as 0 . The lens should not sustain any irreversible damage,
but this procedure should not be performed often.

2. The lens can incorporate various limit or reference switch configurations, therefore
homing procedure should be adapted to a particular geometry. For example, the lens has
reference opto-interrupter when it crosses the middle of its travel. By reading status
register it becomes is clear at which section lens axis is and motor should be moved to
center until switch changes status. To complicate things even more optocoupler or any
switch has backlash/hysteresis and controller comparator has adjustable lower and upper
thresholds. Good understanding of how particular lens behaves is a must and still, it can

https://wiki.kurokesu.com/uploads/images/gallery/2020-08/5uXscf4-m_gui_demo.png


take a few experiments to set optimal parameters. Some lenses depending on each axis
position can have variable travel limits.

Current program version has following homing procedure implemented:

Move motor by a fixed number of steps (lens may hit mechanical stop)
Move opposite direction until the switch is actuated
Move back by a fixed number of steps
Set current position as 0

Program configuration is saved to settings.json . It's a read/write file with the purpose to provide
default settings for some parameters like motion speed, jog steps, last used COM port, etc. and
save settings and last position when program is closed.

Internal stepper motor driver has 16-bit position counter, absolute positioning is possible within a
range of 0..65535 steps, (for 200 steps per revolution motor equals 20 full turns). In relative
movement, if motion exceeds 16bit counter range it will overflow and continue the motion. The
single move command is also 16 bits.

Command-line programs provide quick clean coding templates, examples to understand G-code
usage. Programs explain how to:

Read version string
Initialize and perform relative movements
Perform lens homing
Change motion speed
Perform an emergency stop
And more

For the full list see the examples directory

Control commands also can be sent directly from a terminal program of your choice. Baudrate for
virtual COM port is irrelevant and communication speed over Full-speed USB 2.0 is 12 Mbit/s.

Each command must be terminated by a newline
Each command returns status code or requested information

Command line

Terminal

Revision #13 
Created 27 July 2020 17:56:29 by Saulius 



Updated 6 February 2021 19:39:55 by Saulius


